figshare
Browse
- No file added yet -

Slide: High Performance Low Rank Approximation for Scalable Data Analytics

Download (3.2 MB)
presentation
posted on 2020-02-04, 17:27 authored by Grey BallardGrey Ballard, Haesun ParkHaesun Park, Ramakrishnan Kannan
With the advent of internet-scale data, the data mining and machine learning community has adopted Nonnegative Matrix Factorization (NMF) for performing numerous tasks such as topic modeling, background separation from video data, hyper-spectral imaging, web-scale clustering, and community detection. The goals of this project are to develop efficient parallel algorithms for computing nonnegative matrix and tensor factorizations (NMF and NTF) and their variants using a unified framework, and to produce a software package called Parallel Low-rank Approximation with Nonnegative Constraints (PLANC) that delivers the high performance, flexibility, and scalability necessary to tackle the ever-growing size of today's data sets. The algorithms have been generalized to NTF problems and extend the class of algorithms we can efficiently parallelize; our software framework allows end-users to use and extend our techniques.

Funding

NSF Award #1642385

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC