figshare
Browse
jp5b00882_si_001.pdf (632.89 kB)

Understanding Energy Transfer Mechanisms for Tunable Emission of Yb3+-Er3+ Codoped GdF3 Nanoparticles: Concentration-Dependent Luminescence by Near-Infrared and Violet Excitation

Download (632.89 kB)
journal contribution
posted on 2015-03-26, 00:00 authored by Dekang Xu, Chufeng Liu, Jiawei Yan, Shenghong Yang, Yueli Zhang
Energy transfer (ET) is an important route to manage the population density of excited states, giving rise to spectrally tunable emission that is valuable for multicolor imaging and biological tracking. In this paper, a case study of GdF3 nanoparticles (NPs) codoped with Yb3+ and Er3+ was used to experimentally and theoretically investigate the ET mechanisms under near-infrared and violet excitation. Red-to-green ratio (RGR) is used as a primary evaluating protocol, and the power-dependent luminescence and Er3+ 4I13/2 luminescence behavior are used to identify the corresponding conjectures about ET mechanisms. Compared with the four common upconversion (UC) models, a joint effect of energy-back-transfer, multiphonon relaxation, and linear decay depletion mechanisms for the Er3+ 4I13/2 manifold was proposed for the UC process based on UC spectra for samples with different dopant concentrations. Meanwhile, the varying RGR could also be observed from downshifting (DS) emission spectra. The ET mechanism for the DS process, where three cross-relaxation processes coexisted including the Yb3+ 2F5/2 manifold as energy in-transit state, was proposed for the first time. The findings are expected to provide an approach for understanding ET mechanisms in many Yb3+/Er3+ codoped UC and DS systems and enable spectrally tunable emission properties for applications that require precisely defined optical transitions.

History