Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide

<p>Dengue virus C protein, essential in the dengue virus life cycle, possesses a segment, peptide PepC, known to bind membranes composed of negatively charged phospholipids. To characterize its interaction with the membrane, we have used the molecular dynamics HMMM membrane model system. This approach is capable of achieving a stable system and sampling the peptide/lipid interactions which determine the orientation and insertion of the peptide upon membrane binding. We have been able to demonstrate spontaneous binding of PepC to the 1,2-divaleryl-sn-glycero-3-phosphate/1,2-divaleryl-sn-glycero-3-phosphocholine membrane model system, whereas no binding was observed at all for the 1,2-divaleryl-sn-glycero-3-phosphocholine one. PepC, adopting an α-helix profile, did not insert into the membrane but did bind to its surface through a charge anchor formed by its three positively charged residues. PepC, maintaining its three-dimensional structure along the whole simulation, presented a nearly parallel orientation with respect to the membrane when bound to it. The positively charged amino acid residues Arg-2, Lys-6, and Arg-16 are mainly responsible for the peptide binding to the membrane stabilizing the structure of the bound peptide. The segment of dengue virus C protein where PepC resides is a fundamental protein–membrane interface which might control protein/membrane interaction, and its positive amino acids are responsible for membrane binding defining its specific location in the bound state. These data should help in our understanding of the molecular mechanism of DENV life cycle as well as making possible the future development of potent inhibitor molecules, which target dengue virus C protein structures involved in membrane binding.</p>