figshare
Browse
UAST_1524572_Supplemental file.docx (409.6 kB)

Effect of venting range hood flow rate on size-resolved ultrafine particle concentrations from gas stove cooking

Download (409.6 kB)
journal contribution
posted on 2018-09-19, 16:54 authored by Liu Sun, Lance A. Wallace, Nina A. Dobbin, Hongyu You, Ryan Kulka, Tim Shin, Melissa St-Jean, Daniel Aubin, Brett C. Singer

Cooking is the main source of ultrafine particles (UFP) in homes. This study investigated the effect of venting range hood flow rate on size-resolved UFP concentrations from gas stove cooking. The same cooking protocol was conducted 60 times using three venting range hoods operated at six flow rates in twin research houses. Size-resolved particle (10–420 nm) concentrations were monitored using a NanoScan scanning mobility particle sizer (SMPS) from 15 min before cooking to 3 h after the cooking had stopped. Cooking increased the background total UFP number concentrations to 1.3 × 103 particles/cm3 on average, with a mean exposure-relevant source strength of 1.8 × 1012 particles/min. Total particle peak reductions ranged from 25% at the lowest fan flow rate of 36 L/s to 98% at the highest rate of 146 L/s. During the operation of a venting range hood, particle removal by deposition was less significant compared to the increasing air exchange rate driven by exhaust ventilation. Exposure to total particles due to cooking varied from 0.9 to 5.8 × 104 particles/cm3·h, 3 h after cooking ended. Compared to the 36 L/s range hood, higher flow rates of 120 and 146 L/s reduced the first-hour post-cooking exposure by 76% and 85%, respectively.

© 2018 Crown Copyright. Published with license by Taylor & Francis Group, LLC

History

Usage metrics

    Aerosol Science and Technology

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC