figshare
Browse
XFEM_Fracture2D-20170807.zip (99.97 MB)

XFEM_Fracture2D

Download (99.97 MB) This item is shared privately
software
modified on 2018-02-13, 18:02
This is a Matlab program that can be used to solve fracture problems involving arbitrary multiple crack propagations in a 2D linear-elastic solid based on the principle of minimum potential energy. The extended finite element method is used to discretise the solid continuum considering cracks as discontinuities in the displacement field. To this end, a strong discontinuity enrichment and a square-root singular crack tip enrichment are used to describe each crack. Several crack growth criteria are available to determine the evolution of cracks over time; apart from the classic maximum tension (or hoop-stress) criterion, the minimum total energy criterion and the local symmetry criterion are implemented implicitly with respect to the discrete time-stepping.

Key features:


* Fast: The stiffness matrix and the force vector (i.e. the equations' system) and the enrichment tracking data structures are updated at each time step only with respect to the changes in the fracture topology. This ultimately results in the major part of the computational expense in the solution to the linear system of equations rather than in the post-processing of the solution or in the assembly and updating of the equations. As Matlab offers fast and robust direct solvers, the computational times are reasonably fast.

* Robust. Suitable for multiple crack propagations with intersections. Furthermore, the stress intensity factors are computed robustly via the interaction integral approach (with the inclusion of the terms to account for crack surface pressure, residual stresses or strains). The minimum total energy criterion and the principle of local symmetry are implemented implicitly in time. The energy release rates are computed based on the stiffness derivative approach using algebraic differentiation (rather than finite differencing of the potential energy). On the other hand, the crack growth direction based on the local symmetry criterion is determined such that the local mode-II stress intensity factor vanishes; the change in a crack tip kink angle is approximated using the ratio of the crack tip stress intensity factors.

* Easy to run. Each job has its own input files which are independent form those of all other jobs. The code especially lends itself to running parametric studies. Various results can be saved relating to the fracture geometry, fracture mechanics parameters, and the elastic fields in the solid domain. Extensive visualisation library is available for plotting results.