figshare
Browse

Journal Paper: Optimizing Mobility of Robotic Arms in Collision-free Motion Planning

Published on by Sascha Kaden
A major task in motion planning is to find paths that have a high ability to react to external influences while ensuring a collision-free operation at any time. This flexibility is even more important in human-robot collaboration since unforeseen events can occur anytime. Such ability can be described as mobility, which is composed of two characteristics. First, the ability to manipulate, and second, the distance to joint limits. This mobility needs to be optimized while generating collision-free motions so that there is always the flexibility of the robot to evade dynamic obstacles in the future execution of generated paths. For this purpose, we present a Rapidly-exploring Random Tree (RRT), which applies additional costs and sampling methods to increase mobility. Additionally, we present two methods for the optimization of a generated path. Our first approach utilizes the built-in capabilities of the RRT*. The second method optimize the path with the stochastic trajectory optimization for motion planning (STOMP) approach with Gaussian Mixture Models. Moreover, we evaluate the algorithms in complex simulation and real environments and demonstrate an enhancement of mobility.

Cite items from this project

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review

cite all items

Share

email