figshare
Browse

Inhibition of human kynurenine aminotransferase isozymes by estrogen and its derivatives

Published on by Gayan Jayawickrama
The kynurenine aminotransferase (KAT) enzymes are pyridoxal 5’-phosphate-dependent homodimers that catalyse the irreversible transamination of kynurenine into kynurenic acid (KYNA) in the tryptophan metabolic pathway. Kynurenic acid is implicated in cognitive diseases such as schizophrenia, and several inhibitors have been reported that selectively target KAT-II as it is primarily responsible for kynurenic acid production in the human brain. Not only is schizophrenia a sexually dimorphic condition, but women that have schizophrenia have reduced estrogen levels in their serum. Estrogens are also known to interact in the kynurenine pathway therefore exploring these interactions can yield a better understanding of the condition and improve approaches in ameliorating its effects. Enzyme inhibitory assays and binding studies showed that estradiol disulfate is a strong inhibitor of KAT-I and KAT-II, with estradiol, estradiol 3-sulfate and estrone sulfate being much weaker. Therefore it is possible that estrogen levels can dictate the balance of kynurenic acid in the brain. Inhibition assay results and modelling suggests that the 17-sulfate moiety in estradiol disulfate is very important in improving its potency as an inhibitor.

Cite items from this project

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review

cite all items

Share

email