figshare
Browse

sp2/sp3 Hybridized Carbon as an Anode with Extra Li-Ion Storage Capacity: Construction and Origin

Posted on 2020-07-21 - 20:14
Doping in carbon anodes can introduce active sites, usually leading to extra capacity in Li-ion batteries (LIBs), but the underlying reasons have not been uncovered deeply. Herein, the dodecahedral carbon framework (N-DF) with a low nitrogen content (3.06 wt %) is fabricated as the anode material for LIBs, which shows an extra value of 298 mA h g–1 during 250 cycles at 0.1 A g–1. Various characterizations and theoretical calculations demonstrate that the essence of the extra capacity mainly stems from non-coplanar sp2/sp3 hybridized orbital controlling non-Euclidean geometrical structure, which acts as new Li-ion active sites toward the excess Li+ adsorption. The electrochemical kinetics and in situ transmission electron microscope further reveal that the positive and negative curvature architectures not only provide supernumerary Li+ storage sites on the surface but also hold an enhanced (002) spacing for fast Li+ transport. The sp2/sp3 hybridized orbital design concept will help to develop advanced electrode materials.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?