figshare
Browse

Environmental change controls postglacial forest dynamics through interspecific differences in life-history traits

Posted on 2016-08-05 - 10:25

A key goal of functional ecology is identifying relationships between species traits and environmental conditions. Here, the nature and significance of these relationships to community composition on long ecological timescales is investigated using paleoecological and paleoenvironmental data from coastal British Columbia, Canada. RLQ and fourth-corner analyses, two three-table statistical techniques, are used to link traits of the region's dominant woody plants to environmental conditions over the last 15 000 calendar years (cal yr) through a fossil pollen record derived from lake sediments. Both RLQ and fourth-corner analyses revealed highly significant correlations between plant traits and temporal changes in environmental conditions. Axis 1 of the RLQ explained 92% of the total covariance between plant species traits and paleoenvironmental variables and was correlated most strongly with temperature and relative growth rate. In general, climate change during the cold period following deglaciation favored species such as Alnus sinuata and Pinus contorta that exhibit a “fast” life-history strategy (e.g., high relative growth rate, short life span, low shade tolerance), whereas the relative climatic stability of the last 8000 cal yr favored species such as Tsuga heterophylla that exhibit a “slow” life-history strategy (e.g., low relative growth rate, long life span, high shade tolerance). Fourth-corner analyses revealed significant correlations between all paleoenvironmental variables (i.e., temperature, precipitation, summer insolation, vegetation density) and most plant traits (relative growth rate, minimum seed-bearing age, seed mass, height, life span, and shade, drought, and waterlogging tolerances). The strongest correlation was between paleotemperature and height, reflecting the positive effect of temperature on plant growth and development and the overarching competitive advantage that height confers. This research demonstrates that environmental conditions interact significantly with life-history and stress tolerance traits over long ecological timescales to determine forest composition. Climate is the ultimate control on postglacial forest composition and species abundances, but long-term community assembly is also constrained through interspecific differences in plant traits.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?