figshare
Browse

Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications

Posted on 2016-08-04 - 13:15

Tundra fires have important ecological impacts on vegetation, wildlife, permafrost, and carbon cycling, but the pattern and controls of historic tundra fire regimes are poorly understood. We use sediment records from four lakes to develop a 2000-yr fire and vegetation history in a highly flammable tundra region and compare this history with previously published fire records to examine spatial and temporal variability of tundra burning across Arctic Alaska. The four sites span a modern climatic gradient in the Noatak National Preserve, from warmer, drier down-valley locations to cooler, generally moister up-valley locations. Modern vegetation varies from herb- to shrub-dominated tundra from down- to up-valley sites, and pollen data suggest that this spatial pattern in vegetation persisted over the past two millennia. Peaks in macroscopic charcoal accumulation provide estimates of fire-event return intervals (FRIs), which did not vary significantly at millennial time scales but did vary across space. Down-valley sites burned relatively frequently over the past two millennia, with median FRIs of 150 years (95% CI 101–150) and FRI distributions statistically similar to those from ancient shrub tundra and modern boreal forest. At up-valley sites FRIs were significantly longer than those at down-valley sites, with a median FRI of 218 years (95% CI 128–285). These differences likely reflect the cooler growing-season temperatures and lower evaporative demand at up-valley sites, but local-scale variability in vegetation may have also shaped tundra fire regimes. Comparisons with other long-term fire records in Alaska reveal that the tundra biome can sustain a wide range of burning, with individual FRIs from as low as 30 years to more than 5000 years. These records together indicate that frequent tundra burning has occurred under a range of climatic and vegetation scenarios. The variety of tundra fire histories within Alaska suggests that the ecological impacts of tundra burning likewise vary widely, with important implications for wildlife-habitat maintenance and for the responses of tundra biophysical and biogeochemical processes to climatic change.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?