figshare
Browse

Understanding Composition-Dependent Synergy of PtPd Alloy Nanoparticles in Electrocatalytic Oxygen Reduction Reaction

Posted on 2017-06-22 - 19:43
Gaining an insight into the relationship between the bimetallic composition and catalytic activity is essential for the design of nanoalloy catalysts for oxygen reduction reaction. This report describes findings of a study of the composition–activity relationship for PtPd nanoalloy catalysts in oxygen reduction reaction (ORR). PtnPd100‑n nanoalloys with different bimetallic compositions are synthesized by wet chemical method. While the size of the Pt50Pd50 nanoparticles is the largest among the nanoparticles with different compositions, the characterization of the nanoalloys using synchrotron high-energy X-ray diffraction (HE-XRD) coupled to atomic pair distribution function (PDF) analysis reveals that the nanoalloy with an atomic Pt:Pd ratio of 50:50 exhibits an intermediate lattice parameter. Electrochemical characterization of the nanoalloys shows a minimum ORR activity at Pt:Pd ratio close to 50:50, whereas a maximum activity is achieved at Pt:Pd ratio close to 10:90. The composition–activity correlation is assessed by theoretical modeling based on DFT calculation of nanoalloy clusters. In addition to showing an electron transfer from PtPd alloy to oxygen upon its adsorption on the nanoalloy, a relatively large energy difference between HOMO for nanoalloy and LUMO for oxygen is revealed for the nanoalloy with an atomic Pt:Pd ratio of 50:50. By analysis of the adsorption of OH species on PtPd (111) surfaces of different compositions, the strongest adsorption energy is observed for Pt96Pd105 (Pt:Pd ≈ 50:50) cluster, which is believed to be likely responsible for the reduced activity. Interestingly, the adsorption energy on Pt24Pd177 (Pt:Pd ≈ 10:90) cluster falls in between Pt96Pd105 and Pd201 clusters, which is believed to be linked to the observation of the highest catalytic activity for the nanoalloy with an atomic Pt:Pd ratio of 10:90. These findings have implications for the design of composition-tunable nanoalloy catalysts for ORR.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?