figshare
Browse

Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells

Posted on 2017-09-08 - 05:00
Abstract Background Due to the limited availability and high cost of fish oil in the face of increasing aquaculture production, there is a need to reduce usage of fish oil in aquafeeds without compromising farm fish health. Therefore, the present study was conducted to determine if different levels of vegetable and fish oils can alter antiviral responses of salmon macrophage-like cells (MLCs). Atlantic salmon (Salmo salar) were fed diets containing 7.4% (FO7) or 5.1% (FO5) fish oil. These diets were designed to be relatively low in EPA + DHA (i.e. FO7: 1.41% and FO5: 1%), but near the requirement level, and resulting in comparable growth. Vegetable oil (i.e. rapeseed oil) was used to balance fish oil in experimental diets. After a 16-week feeding trial, MLCs isolated from fish in these dietary groups were stimulated by a viral mimic (dsRNA: pIC) for 6 h (qPCR assay) and 24 h (microarray and qPCR assays). Results The fatty acid composition of head kidney leukocytes varied between the two dietary groups (e.g. higher 20:5n-3 in the FO7 group). Following microarray assays using a 44K salmonid platform, Rank Products (RP) analysis showed 14 and 54 differentially expressed probes (DEP) (PFP < 0.05) between the two diets in control and pIC groups (FO5 vs. FO7), respectively. Nonetheless, Significance Analysis of Microarrays (SAM, FDR < 0.05) identified only one DEP between pIC groups of the two diets. Moreover, we identified a large number (i.e. 890 DEP in FO7 and 1128 DEP in FO5 overlapping between SAM and RP) of pIC-responsive transcripts, and several of them were involved in TLR−/RLR-dependent and cytokine-mediated pathways. The microarray results were validated as significantly differentially expressed by qPCR assays for 2 out of 9 diet-responsive transcripts and for all of the 35 selected pIC-responsive transcripts. Conclusion Fatty acid-binding protein adipocyte (fabp4) and proteasome subunit beta type-8 (psmb8) were significantly up- and down-regulated, respectively, in the MLCs of fish fed the diet with a lower level of fish oil, suggesting that they are important diet-responsive, immune-related biomarkers for future studies. Although the different levels of dietary fish and vegetable oils involved in this study affected the expression of some transcripts, the immune-related pathways and functions activated by the antiviral response of salmon MLCs in both groups were comparable overall. Moreover, the qPCR revealed transcripts responding early to pIC (e.g. lgp2, map3k8, socs1, dusp5 and cflar) and time-responsive transcripts (e.g. scarb1-a, csf1r, traf5a, cd80 and ctsf) in salmon MLCs. The present study provides a comprehensive picture of the putative molecular pathways (e.g. RLR-, TLR-, MAPK- and IFN-associated pathways) activated by the antiviral response of salmon MLCs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?