figshare
Browse

Tomographic diffractive imaging of monolayer crystals at atomic resolution with one-dimensional compact support

Posted on 2017-04-28 - 14:00
A solution to the phase problem for diffraction by two-dimensional crystalline slabs is described, based on the application of a compact support normal to the slab. Specifically we apply the iterative Gerchberg-Saxton-Fienup algorithm to simulated three-dimensional transmission electron diffraction data from monolayer organic crystals. We find that oversampling normal to the monolayer alone does not solve the phase problem in this geometry in general. However, based on simulations for a crystalline monolayer (tetracyanoethylene), we find that convergence is obtained if phases are supplied from a few high-resolution electron microscope images recorded at small tilts to the beam direction. Since current cryomicroscopy methods required a large number of images to phase tomographic diffraction data, this method should greatly reduce the labor involved in data acquisition and analysis in cryo-electron microscopy of organic thin crystals by avoiding the need to record images at high tilt angles. We discuss also the use of laser tweezers as a method of supporting nanoparticles in TEM for diffractive imaging

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?