figshare
Browse

The responses of soil and rhizosphere respiration to simulated climatic changes vary by season

Posted on 2016-08-09 - 14:16

Responses of soil respiration (Rs) to anthropogenic climate change will affect terrestrial carbon storage and, thus, feed back to warming. To provide insight into how warming and changes in precipitation regimes affect the rate and temperature sensitivity of Rs and rhizosphere respiration (Rr) across the year, we subjected a New England old-field ecosystem to four levels of warming and three levels of precipitation (ambient, drought, and wet treatments). We measured Rs and heterotrophic respiration (Rh) monthly (in areas of the plots with and without plants, respectively) and estimated Rr by calculating the difference in respiration between Rs and Rh. Even in this mesic ecosystem, Rs and Rr responded strongly to the precipitation treatments. Drought reduced Rs and Rr, both annually and during the growing season. Annual cumulative Rs responded nonlinearly to precipitation treatments; both drought and supplemental precipitation suppressed Rs compared to the ambient treatment. Warming increased Rs and Rr in spring and winter when soil moisture was optimal but decreased these rates in summer when moisture was limiting. Cumulative winter Rr increased by about 200% in the high warming (∼3.5°C) treatment. The effect of climate treatments on the temperature sensitivity of Rs depended on the season. In the fall, the drought treatment decreased apparent Q10 relative to the other precipitation treatments. The responses of Rs to warming and altered precipitation were largely driven by changes in Rr. We emphasize the importance of incorporating realistic soil moisture responses into simulations of soil carbon fluxes; the long-term effects of warming on carbon–climate feedback will depend on future precipitation regimes. Our results highlight the nonlinear responses of soil respiration to soil moisture and, to our knowledge, quantify for the first time the loss of carbon through winter rhizosphere respiration due to warming. While this additional loss is small relative to the cumulative annual flux in this system, such increases in rhizosphere respiration during the non-growing season could have greater consequences in ecosystems where they offset or reduce subsequent warming-induced gains in plant growth.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?