figshare
Browse

Tailoring a Thermally Stable Amorphous SiOC Structure for the Separation of Large Molecules: The Effect of Calcination Temperature on SiOC Structures and Gas Permeation Properties

Posted on 2018-06-13 - 13:57
A SiOC membrane with high oxidative stability for gas separation was tailored by utilizing vinyltrimethoxysilane, triethoxysilane, and 1,1,3,3-tetramethyldisiloxane as Si precursors. Amorphous SiOC networks were formed via the condensation of Si–OH groups, the hydrosilylation of Si–H and Si–CHCH2 groups, and a crosslinking reaction of Si–CH3 groups, respectively. The crosslinking of Si–CH3 groups at temperatures ranging from 600 to 700 °C under a N2 atmosphere was quite effective in constructing a Si–CH2–Si unit without the formation of mesopores, which was confirmed by the results of N2 adsorption and by the gas permeation properties. The network pore size of the SiOC membrane calcined at 700 °C under N2 showed high oxidative stability at 500 °C and was appropriate for the separation of large molecules (H2/CF4 selectivity: 640, H2/SF6: 2900, N2/CF4: 98). A SiOC membrane calcined at 800 °C showed H2/N2 selectivity of 62, which was approximately 10 times higher than that calcined at 700 °C because the SiOC networks were densified by the cleavage and redistribution reactions of Si–C and Si–O groups.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?