figshare
Browse

Tailoring Dispersion of Room-Temperature Exciton-Polaritons with Perovskite-Based Subwavelength Metasurfaces

Posted on 2020-02-24 - 13:49
Exciton-polaritons represent a promising platform for studying quantum fluids of light and realizing prospective all-optical devices. Here we report on the experimental demonstration of exciton-polaritons at room temperature in resonant metasurfaces made from a sub-wavelength two-dimensional lattice of perovskite pillars. The strong coupling regime is revealed by both angular-resolved reflectivity and photoluminescence measurements, showing anticrossing between photonic modes and the exciton resonance with a Rabi splitting in the 200 meV range. Moreover, by tailoring the photonic Bloch mode to which perovskite excitons are coupled, polaritonic dispersions are engineered exhibiting linear, parabolic, and multivalley dispersions. All of our results are perfectly reproduced by both numerical simulations based on a rigorous coupled wave analysis and an elementary model based on a quantum theory of radiation–matter interaction. Our results suggest a new approach to study exciton-polaritons and pave the way toward large-scale and low-cost integrated polaritonic devices operating at room temperature.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?