figshare
Browse

Symmetric Sodium-Ion Battery Based on Dual-Electron Reactions of NASICON-Structured Na3MnTi(PO4)3 Material

Posted on 2020-06-25 - 16:08
Symmetric sodium-ion batteries possess promising features such as low cost, easy manufacturing process, and facile recycling post-process, which are suitable for the application of large-scale stationary energy storage. Herein, we proposed a symmetric sodium-ion battery based on dual-electron reactions of a NASICON-structured Na3MnTi­(PO4)3 material. The Na3MnTi­(PO4)3 electrode can deliver a stable capacity of up to 160 mAh g–1 with a Coulombic efficiency of 97% at 0.1 C by utilizing the redox reactions of Ti3+/4+, Mn2+/3+, and Mn3+/4+. This is the first time to investigate the symmetric sodium-ion full cell using Na3MnTi­(PO4)3 as both cathode and anode in the organic electrolyte, demonstrating excellent reversibility and cycling performance with voltage plateaus of about 1.4 and 1.9 V. The full cell exhibits a reversible capacity of 75 mAh g–1 at 0.1 C and an energy density of 52 Wh kg–1. In addition, both ex situ X-ray diffraction (XRD) analysis and first-principles calculations are employed to investigate the sodiation mechanism and structural evolution. The current research provides a feasible strategy for the symmetric sodium-ion batteries to achieve high energy density.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?