figshare
Browse

Supplementary material from "The composition and friction reducing properties of leaf layers"

Posted on 2020-07-11 - 16:28
Every autumn rail networks across the world suffer delays, accidents and schedule changes due to low friction problems caused by leaves landing on the rails. These leaves form a layer that can reduce the friction between the wheel and the rail to a similar level as that between ice and an ice-skate (μ = 0.01–0.05). Previous works have generated several hypotheses for the chemical reactions and low friction mechanism associated with these layers. In this work, the reaction between an aqueous extract of sycamore leaves and metallic iron is investigated. This reaction has been shown to produce a black precipitate, which matches field observations of leaf layers, while friction tests with these extracts produce characteristic ultra low friction. The reaction is investigated through FTIR, XPS, CHNS and ICP-MS analysis as well as wet chemical testing. The impact of the reaction on friction is investigated through three rounds of tribological testing. The results indicate that the black precipitate produced is iron tannate, formed by complexation of tannins with dissolved iron ions. Friction testing showed that eliminating tannins from the leaf extract resulted in a significant increase in friction coefficient compared to the control.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences

AUTHORS (5)

Michael Watson
Benjamin White
Joseph Lanigan
Tom Slatter
Roger Lewis
need help?