figshare
Browse

Supplementary material from "Spectral graph theory efficiently characterizes ventilation heterogeneity in lung airway networks."

Posted on 2020-07-25 - 13:38
This paper introduces a linear operator for the purposes of quantifying the spectral properties of transport within resistive trees, such as airflow in lung airway networks. The operator, which we call the Maury matrix, acts only on the terminal nodes of the tree and is equivalent to the adjacency matrix of a complete graph summarizing the relationships between all pairs of terminal nodes. We show that the eigenmodes of the Maury operator have a direct physical interpretation as the relaxation, or resistive, modes of the network. We apply these findings to both idealized and image-based models of ventilation in lung airway trees and show that the spectral properties of the Maury matrix characterize the flow asymmetry in these networks more concisely than the Laplacian modes, and that eigenvector centrality in the Maury spectrum is closely related to the phenomenon of ventilation heterogeneity caused by airway narrowing or obstruction. This method has applications in dimensionality reduction in simulations of lung mechanics, as well as for characterization of models of the airway tree derived from medical images.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Journal of the Royal Society Interface

AUTHORS (6)

Carl A. Whitfield
Peter Latimer
Alex Horsley
Jim M. Wild
Guilhem J. Collier
Oliver E. Jensen
need help?