Supplementary material from "Drivers of variation in species impacts for a multi-host fungal disease of bats"
Posted on 2016-10-05 - 15:17
Disease can play an important role in structuring species communities because the effects of disease vary among hosts; some species are driven towards extinction, while others suffer relatively little impact. Why disease impacts vary among host species remains poorly understood for most multi-host pathogens, and factors allowing less susceptible species to persist could be useful in conserving highly affected species. White-nose syndrome (WNS), an emerging fungal disease in bats, has decimated some species while sympatric and closely related species have experienced little effect. We analysed data on infection prevalence, fungal loads and environmental factors to determine how variation in infection among sympatric host species influenced the severity of WNS population impacts. Intense transmission resulted in almost uniformly high prevalence in all species. By contrast, fungal loads varied over 3 orders of magnitude among species, and explained 98% of the variation among species in disease impacts. Fungal loads increased with hibernating roosting temperatures, with bats roosting at warmer temperatures having more higher fungal loads and higher WNS impacts. We also found evidence of a threshold fungal load, above which the probability of mortality may increase sharply, and this threshold was similar for multiple species. This study demonstrates how differences in behavioural traits among species—in this case microclimate preferences—that may have been previously adaptive, can be deleterious after the introduction of a new pathogen. Management to reduce pathogen loads rather than exposure may be an effective way of reducing disease impact and preventing species extinctions.This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
E. Langwig, Kate; F. Frick, Winifred; R. Hoyt, Joseph; L. Parise, Katy; Drees, Kevin P.; H. Kunz, Thomas; et al. (2016). Supplementary material from "Drivers of variation in species impacts for a multi-host fungal disease of bats". The Royal Society. Collection. https://doi.org/10.6084/m9.figshare.c.3493050.v1