figshare
Browse

Supplementary material from "Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms"

Version 2 2017-05-06, 07:04
Version 1 2017-04-27, 14:16
Posted on 2017-05-06 - 07:04
Thoracic aortic aneurysms are life-threatening lesions that afflict young and old individuals alike. They frequently associate with genetic mutations and are characterized by reduced elastic fibre integrity, dysfunctional smooth muscle cells, improperly remodelled collagen and pooled mucoid material. There is a pressing need to understand better the compromised structural integrity of the aorta that results from these genetic mutations and renders the wall vulnerable to dilatation, dissection or rupture. In this paper, we compare the biaxial mechanical properties of the ascending aorta from 10 murine models: wild-type controls, acute elastase-treated, and eight models with genetic mutations affecting extracellular matrix proteins, transmembrane receptors, cytoskeletal proteins, or intracellular signalling molecules. Collectively, our data for these diverse mouse models suggest that reduced mechanical functionality, as indicated by a decreased elastic energy storage capability or reduced distensibility, does not predispose to aneurysms. Rather, despite normal or lower than normal circumferential and axial wall stresses, it appears that intramural cells in the ascending aorta of mice prone to aneurysms are unable to maintain or restore the intrinsic circumferential material stiffness, which may render the wall biomechanically vulnerable to continued dilatation and possible rupture. This finding is consistent with an underlying dysfunctional mechanosensing or mechanoregulation of the extracellular matrix, which normally endows the wall with both appropriate compliance and sufficient strength.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Journal of the Royal Society Interface

AUTHORS (10)

C. Bellini
M. R. Bersi
A. W. Caulk
J. Ferruzzi
D. M. Milewicz
F. Ramirez
D. B. Rifkin
G. Tellides
H. Yanagisawa
J. D. Humphrey
need help?