figshare
Browse

Supplementary material from "Bed separation backfill to reduce surface cracking due to mining under thick and hard conglomerate: a case study"

Version 2 2019-08-16, 08:10
Version 1 2019-08-16, 08:07
Posted on 2019-08-16 - 08:10
After coal mining, the surface above a goaf may experience the discontinuous deformation under some special geological and mining conditions, such as surface cracking, surface step subsidence and collapse pits. Discontinuous deformation seriously threatens the safety of surface buildings and infrastructures. In this paper, the mechanism of discontinuous surface deformation and surface cracking due to coal mining under thick and hard conglomerate in the Huafeng coal mine was studied using a simulation test on similar materials. Bed separation backfill was then proposed to control surface cracking and to protect the Luli bridge. Because of lithological differences between the conglomerate and relatively weak red strata (beneath the conglomerate), the bed separation occurred between them with the advancement of the working face. When the bed separation span exceeded its breaking span, the conglomerate fractured, causing surface cracking of the downhill area and seriously damaging the stability of the Luli bridge. Three drilling holes were arranged along the strikes of the 1412 and 1613 working faces and nearly 387 000 m3 of backfill materials (water, fly ash and gangue powder) were injected into the bed separation space to reduce or prevent fracturing of the conglomerate. The compacted backfill body supported the conglomerate and reduced the subsidence of the basin and surface ‘rebound' deformation at the edge of the subsidence basin. Clay in the red strata expanded upon contact with water, and this further backfilled the bed separation zone and supported the conglomerate. The upper and lower structures and foundation of the bridge were reinforced using various methods. It was shown that bed separation backfill effectively controlled conglomerate movement and protected the bridge with a maximum subsidence of 251 mm. No obvious surface cracks were observed near the Luli bridge.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?