figshare
Browse

Supplementary material from "Architecture and evolution of semantic networks in mathematics texts"

Posted on 2020-07-11 - 16:28
Knowledge is a network of interconnected concepts. Yet, precisely how the topological structure of knowledge constrains its acquisition remains unknown, hampering the development of learning enhancement strategies. Here, we study the topological structure of semantic networks reflecting mathematical concepts and their relations in college-level linear algebra texts. We hypothesize that these networks will exhibit structural order, reflecting the logical sequence of topics that ensures accessibility. We find that the networks exhibit strong core–periphery architecture, where a dense core of concepts presented early is complemented with a sparse periphery presented evenly throughout the exposition; the latter is composed of many small modules each reflecting more narrow domains. Using tools from applied topology, we find that the expositional evolution of the semantic networks produces and subsequently fills knowledge gaps, and that the density of these gaps tracks negatively with community ratings of each textbook. Broadly, our study lays the groundwork for future efforts developing optimal design principles for textbook exposition and teaching in a classroom setting.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?