figshare
Browse

Spatially Constrained DNA Nanomachines To Accelerate Kinetics in Response to External Input: Design and Bioanalysis

Posted on 2020-06-25 - 18:13
Cells take advantage of the spatial organization to accelerate the reaction kinetics of diverse components within a crowded intracellular environment. Inspired by this, we hereby designed a principle of spatial constraint to overcome limitations of response kinetics in DNAzyme-powered DNA nanomachines. First, we proposed the type-1 of spatially constrained DNA nanomachines (scDN-1) by co-localizing the aptamer probe and power unit (DNAzyme), allowing the DNA nanomachines to accomplish faster cyclic cleavage of DNAzyme as intramolecular reactions. To expand the scDN into the clinical practice, Type 2 spatially constrained DNA nanomachines (scDN-2) with constrained antibody probes were then constructed through Holliday junction assembly, which increased the effective local concentration to obtain the improved kinetics. With an accelerated response kinetics, this design principle allows DNA nanomachines to accomplish the response to tumor markers in real patients’ samples within 30 min, significantly broadening the bioanalytical applications of DNA nanomachines to clinical practice.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?