figshare
Browse

Self-Calibration Phenomenon for Near-Infrared Clinical Measurements: Theory, Simulation, and Experiments

Posted on 2018-03-08 - 19:15
An irradiated turbid medium scatters the light in accordance to its optical properties. Near-infrared (NIR) clinical methods, which are based on spectral-dependent absorption, suffer from an inherent error due to spectral-dependent scattering. We present here a unique spatial point, that is, iso-pathlength (IPL) point, on the surface of a tissue at which the intensity of re-emitted light remains constant. This scattering-indifferent point depends solely on the medium geometry. On the basis of this natural phenomenon, we suggest a novel optical method for self-calibrated clinical measurements. We found that the IPL point exists in both cylindrical and semi-infinite tissue geometries (Supporting Information, Video file). Finally, in vivo human finger and mice measurements are used to validate the crossing point between the intensity profiles of two wavelengths. Hence, measurements at the IPL point yield an accurate absorption assessment while eliminating the scattering dependence. This finding can be useful for oxygen saturation determination, NIR spectroscopy, photoplethysmography measurements, and a wide range of optical sensing methods for physiological aims.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?