figshare
Browse

Reactivity of Monoterpene Criegee Intermediates at Gas–Liquid Interfaces

Version 2 2018-09-21, 02:43
Version 1 2018-09-19, 17:26
Posted on 2018-09-21 - 02:43
Biogenic monoterpenes are major sources of Criegee intermediates (CIs) in the troposphere. Recent studies underscored the importance of their heterogeneous chemistry. The study of monoterpene CI reactions on liquid surfaces, however, is challenging due to the lack of suitable probes. Here, we report the first mass spectrometric detection of the intermediates and products, which include labile hydroperoxides, from reactions of CIs of representative monoterpenes (α-terpinene, γ-terpinene, terpinolene, d-limonene, α-pinene) with water, cis-pinonic acid (CPA) and octanoic acid (OA) on the surface of liquid microjets. Significantly, the relative yields of α-hydroxy-hydroperoxides production from CIs hydration at the gas–liquid interfaceα-terpinene (1.00) ≫ d-limonene (0.18) > γ-terpinene (0.11) ∼ terpinolene (0.10) ≫ α-pinene (0.01)do not track the rate constants of their gas-phase ozonolyses. Notably, in contrast with the inertness of the other CIs, the CIs derived from α-terpinene ozonolysis readily react with CPA and OA to produce C20 and C18 ester hydroperoxides, respectively. Present results reveal hitherto unknown structural effects on the reactivities of CIs at aqueous interfaces.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?