figshare
Browse

Porous Carbon Substrate Improving the Sensing Performance of Copper Nanoparticles Toward Glucose

Posted on 2021-08-07 - 03:45
Abstract An accurate sensor to rapidly determine the glucose concentration is of significant importance for the human body health, as diabetes has become a very high incidence around the world. In this work, copper nanoparticles accommodated in porous carbon substrates (Cu NP@PC), synthesized by calcinating the filter papers impregnated with copper ions at high temperature, were designed as the electrode active materials for electrochemical sensing of glucose. During the formation of porous carbon, the copper nanoparticles spontaneously accommodated into the formed voids and constituted the half-covered composites. For the electrochemical glucose oxidation, the prepared Cu NP@PC composites exhibit much superior catalytic activity with the current density of 0.31 mA/cm2 at the potential of 0.55 V in the presence of 0.2 mM glucose. Based on the high electrochemical oxidation activity, the present Cu NP@PC composites also exhibit a superior glucose sensing performance. The sensitivity is determined to be 84.5 μA /(mmol.L) with a linear range of 0.01 ~ 1.1 mM and a low detection limit (LOD) of 2.1 μmol/L. Compared to that of non-porous carbon supported copper nanoparticles (Cu NP/C), this can be reasonable by the improved mass transfer and strengthened synergistic effect between copper nanoparticles and porous carbon substrates.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?