figshare
Browse

Plant-Soil Processes in Eriophorum Vaginatum Tussock Tundra in Alaska: A Systems Modeling Approach

Posted on 2016-08-10 - 13:50

The Arctic Tundra Simulator (ARTUS) is a computer—based simulation model of Eriophorum vaginatum tussock tundra ecosystems found in north central Alaska. ARTUS simulates the annual patterns of heat and water balance, carbon fixation, plant growth, and nitrogen and phosphorus cycling. ARTUS runs in 1—d time steps for a growing season from 1 May to 17 September and is intended to run for several years. The abiotic section of ARTUS encodes the seasonal input of the environmental driving variables and calculates the resultant thermal and water regimes to define the heat and water environments for the tussock tundra system. The primary driving variables are daily total solar radiation, air temperature, precipitation, surface albedo, wind, and sky conditions. The soil compartment contains three organic horizons, which are recognized by their state of physical and chemical decomposition, and one mineral horizon. Six vascular plant species and four moss species are simulated. The model has seven compartments for each vascular plant species: total nonstructural carbohydrates, total nitrogen, total phosphorus, leaves grown in the current season, leaves grown in previous years, conducting and storage stems plus roots, and absorbing roots. In ARTUS the functional unit of the plant is the shoot system or ramet. Each shoot system consists of leaves, stems, fine roots (which do not have secondary growth and have a limited life—span), and larger roots, which have secondary growth and an extended life—span. Although plant processes are based on individual shoots, the ARTUS model as a whole is based on a square metre of ground. Values per square metre are calculated from the values per shoot by multiplying by the shoot density of each species. The model was validated by comparing calculated and measured peak season biomasses and nutrient contents, and the seasonal progression of environmental processes, biomass, carbohydrate contents, and nutrient contents. ARTUS successfully simulated the seasonality of the physical environment, but simulated thaw depths were deeper than those measured at all sites. The simulated value for total vascular plant production was 77% of the measured value. The simulated values for ecosystem respiration for Eagle Creek were within the range of measured values. Simulations with ARTUS indicated different patterns of growth and different storage—carbohydrate levels in deciduous shrubs, evergreen shrubs, and graminoids. The simulated seasonal course of net primary production of vascular plants and mosses was similar to the pattern measured at Eagle Creek. Sensitivity analysis using ARTUS indicated that the tussock tundra is more sensitive to external environmental factors, such as increased temperature, than to internal ecosystem variables. The development of ARTUS was limited by the unavailability of data on whole—plant carbon balance including root and stem respiration. More data are also needed on decomposition processes and nitrogen and phosphorus cycling. Adequate climatological data for northern Alaska are needed for extensive validations of the model. While caution should be used in basing managerial decisions on model simulations, ARTUS can be used to identify and quantify the magnitude and direction of plant responses to changes in state variables in the model.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Ecological Monographs

AUTHORS (12)

P. C. Miller
P. M. Miller
M. Blake-Jacobson
F. S. Chapin
K. R. Everett
D. W. Hilbert
J. Kummerow
A. E. Linkins
G. M. Marion
W. C. Oechel
S. W. Roberts
L. Stuart
need help?