figshare
Browse

Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions

Posted on 2017-11-17 - 20:46
A combined experimental and computational approach was used to investigate the spectroscopic properties of three different aniline derivatives (aniline, N,N-dimethylaniline, and N,N-diethylaniline) in aqueous solutions and at the air–ice interface in the temperature range of 243–298 K. The absorption and diffuse reflectance spectra of ice samples prepared by different techniques, such as slow or shock freezing of the aqueous solutions or vapor deposition on ice grains, exhibited unequivocal bathochromic shifts of 10–15 nm of the absorption maxima of anilines in frozen samples compared to those in liquid aqueous solutions. DFT and SCS-ADC(2) calculations showed that contaminant–contaminant and contaminant–ice interactions are responsible for these shifts. Finally, we demonstrate that irradiation of anilines in the presence of a hydrogen peroxide/O2 system by wavelengths that overlap only with the red-shifted absorption tails of anilines in frozen samples (while having a marginal overlap with their spectra in liquid solutions) can almost exclusively trigger a photochemical oxidation process. Mechanistic and environmental considerations are discussed.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?