figshare
Browse

Myosin light chain kinase (MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions

Posted on 2018-03-09 - 12:00

Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Pulmonary Circulation

AUTHORS (8)

Ting Wang
Mary E. Brown
Gabriel T. Kelly
Sara M. Camp
Joseph B. Mascarenhas
Xiaoguang Sun
Steven M. Dudek
Joe G.N. Garcia
need help?