figshare
Browse

Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression

Posted on 2020-07-14 - 06:29
DNA nanostructures have garnered considerable interest as research tools in the field of cell biology and pathology. Herein, we develop an addressable double-bundle DNA tetrahedron with distinct modification sites to load multiple functional components for efficient regulation of gene expression. In our tailored nanoplatform, nucleic acid drugs (antisense for gene therapy) and protein drugs (KillerRed for photodynamic therapy) are precisely organized in the chemically well-defined DNA tetrahedron. With the attachment of active targeting groups, this functional DNA nanocarrier can efficiently penetrate into the cell membrane and subsequently transport drugs to the target subcellular organelles (mitochondrion and nucleus) for inducing synergistic cell behavior regulation to start the endogenous apoptotic process. This tailored DNA nanocarrier provides unprecedented opportunities for intelligent drug delivery and cell biology research.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?