figshare
Browse

Modeling [18F]-FDG lymphoid tissue kinetics to characterize nonhuman primate immune response to Middle East respiratory syndrome-coronavirus aerosol challenge

Posted on 2015-11-16 - 05:00
Abstract Background The pathogenesis and immune response to Middle East respiratory syndrome (MERS) caused by a recently discovered coronavirus, MERS-CoV, have not been fully characterized because a suitable animal model is currently not available. 18F-Fluorodeoxyglucose ([18F]-FDG)-positron emission tomography/computed tomography (PET/CT) as a longitudinal noninvasive approach can be beneficial in providing biomarkers for host immune response. [18F]-FDG uptake is increased in activated immune cells in response to virus entry and can be localized by PET imaging. We used [18F]-FDG-PET/CT to investigate the host response developing in nonhuman primates after MERS-CoV exposure and applied kinetic modeling to monitor the influx rate constant (K i ) in responsive lymphoid tissue. Methods Multiple [18F]-FDG-PET and CT images were acquired on a PET/CT clinical scanner modified to operate in a biosafety level 4 environment prior to and up to 29 days after MERS-CoV aerosol exposure. Time activity curves of various lymphoid tissues were reconstructed to follow the [18F]-FDG uptake for approximately 60 min (3,600 s). Image-derived input function was used to calculate K i for lymphoid tissues by Patlak plot. Results Two-way repeated measures analysis of variance revealed alterations in K i that was associated with the time point (p < 0.001) after virus exposure and the location of lymphoid tissue (p = 0.0004). As revealed by a statistically significant interaction (p < 0.0001) between these two factors, the pattern of K i changes over time differed between three locations but not between subjects. A distinguished pattern of statistically significant elevation in K i was observed in mediastinal lymph nodes (LNs) that correlated to K i changes in axillary LNs. Changes in LNs K i were concurrent with elevations of monocytes in peripheral blood. Conclusions [18F]-FDG-PET is able to detect subtle changes in host immune response to contain a subclinical virus infection. Full quantitative analysis is the preferred approach rather than semiquantitative analysis using standardized uptake value for detection of the immune response to the virus.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

EJNMMI Research

AUTHORS (12)

Svetlana Chefer
David Thomasson
Jurgen Seidel
Richard Reba
J. Bohannon
Mathew Lackemeyer
Chris Bartos
Philip Sayre
Laura Bollinger
Lisa Hensley
Peter Jahrling
Reed Johnson
need help?