figshare
Browse

Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction

Posted on 2020-04-09 - 14:43
Rational design and bottom-up synthesis based on the structural topology is a promising way to obtain two-dimensional metal–organic frameworks (2D MOFs) in well-defined geometric morphology. Herein, a topology-guided bottom-up synthesis of a novel hexagonal 2D MOF nanoplate is realized. The hexagonal channels constructed via the distorted (3,4)-connected Ni2(BDC)2(DABCO) (BDC = 1,4-benzene­dicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2]­octane) framework serve as the template for the specifically designed morphology. Under the inhibition and modulation of pyridine through a substitution–suppression process, the morphology can be modified from hexagonal nanorods to nanodisks and to nanoplates with controllable thickness tuned by the dosage of pyridine. Subsequent pyrolysis treatment converts the nanoplates into a N-doped Ni@carbon electrocatalyst, which exhibits a small overpotential as low as 307 mV at a current density of 10 mA cm–2 in the oxygen evolution reaction.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?