figshare
Browse

Metal–Organic Framework-Derived NiS/Fe3O4 Heterostructure-Decorated Carbon Nanotubes as Highly Efficient and Durable Electrocatalysts for Oxygen Evolution Reaction

Posted on 2020-07-03 - 14:03
Because of the sluggish oxygen evolution kinetics, it is extremely important but still challenging to develop low-cost, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) to enhance the efficiency of water electrolysis. Herein, for the first time, we present a novel heterostructure catalyst, constructed by ultrafine NiS/Fe3O4 heterostructural nanoparticles decorated on a carbon nanotube (CNT) matrix (NiS/Fe3O4 HNPs@CNT), which is synthesized by a facile hydrothermal reaction and subsequent sulfurization process. The NiS/Fe3O4 HNPs@CNT hybrid delivers superior OER activity in alkaline medium: it delivers a current density of 10 mA cm–2 at an ultralow overpotential of 243 mV with a small Tafel slope of 44.2 mV dec–1, which outperforms the benchmark RuO2 electrocatalyst; moreover, it exhibits terrific long-term stability over 36 h without any noticeable performance decay. The exceptional OER performance can be attributed to the unique nanoarchitecture, high conductivity of the CNT matrix, and particularly, the interaction between the Ni and Fe species in NiS/Fe3O4 heterostructural nanoparticles. This work introduces a sensible nanoarchitecture design with a facile and novel fabrication strategy to attain nonprecious metal-based composite catalysts with high OER performance and outstanding long-term stability.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?