figshare
Browse

Mechanochemical Effect in the Iron(III) Spin Crossover Complex [Fe(3-MeO-salenEt)2]PF6 as Studied by Heat Capacity Calorimetry

Version 2 2018-04-10, 18:05
Version 1 2016-02-27, 15:38
Posted on 2018-04-10 - 18:05
Magnetic and thermal properties of the iron(III) spin crossover complex [Fe(3MeO-salenEt)2]PF6 are very sensitive to mechanochemical perturbations. Heat capacities for unperturbed and differently perturbed samples were precisely determined by adiabatic calorimetry at temperatures in the 10−300 K range. The unperturbed compound shows a cooperative spin crossover transition at 162.31 K, presenting a hysteresis of 2.8 K. The anomalous enthalpy and entropy contents of the transition were evaluated to be Δtrs H = 5.94 kJ mol-1 and Δtrs S = 36.7 J K-1 mol-1, respectively. By mechanochemical treatments, (1) the phase transition temperature was lowered by 1.14 K, (2) the enthalpy and entropy gains at the phase transition due to the spin crossover phenomenon were diminished to Δtrs H = 4.94 kJ mol-1 and Δtrs S = 31.1 J K-1 mol-1, and (3) the lattice heat capacities were larger than those of the unperturbed sample over the whole temperature range. In spite of different mechanical perturbations (grinding with a mortar and pestle and grinding in a ball-mill), two sets of heat capacity measurements provided basically the same results. The mechanochemical perturbation exerts its effect more strongly on the low-spin state than on the high-spin state. It shows a substantial increase of the number of iron(III) ions in the high-spin state below the transition temperature. The heat capacities of the diamagnetic cobalt(III) analogue [Co(3MeO-salenEt)2]PF6 also were measured. The lattice heat capacity of the iron compounds has been estimated from either the measurements on the cobalt complex using a corresponding states law or the effective frequency distribution method. These estimations have been used for the evaluation of the transition anomaly.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?