figshare
Browse

Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest

Posted on 2016-08-09 - 09:47

Despite their ubiquity, the role of ants in driving ecosystem processes both aboveground and belowground has been seldom explored, except within the nest. During 1995 we established 16 ant exclusion plots of approximately 1.1 × 1.1 m, together with paired control plots, in the understory layer of a boreal forest ecosystem in northern Sweden that supports high densities of the mound-forming ant Formica aquilonia, a red wood ant species of the Formica rufa group. Aboveground and belowground measurements were then made on destructively sampled subplots in 2001 and 2008, i.e., 6 and 13 years after set-up. While ant exclusion had no effect on total understory plant biomass, it did greatly increase the relative contribution of herbaceous species, most likely through preventing ants from removing their seeds. This in turn led to higher quality resources entering the belowground subsystem, which in turn stimulated soil microbial biomass and activity and the rates of loss of mass and carbon (C) and nitrogen (N) from litter in litterbags placed in the plots. This was accompanied by losses of ∼15% of N and C stored in the humus on a per area basis. Ant exclusion also had some effects on foliar stable isotope ratios for both C and N, most probably as a consequence of greater soil fertility. Further, exclusion of ants had multitrophic effects on a microbe–nematode soil food web with three consumer trophic levels and after six years promoted the bacterial-based relative to the fungal-based energy channel in this food web. Our results point to a major role of red wood ants in determining forest floor vegetation and thereby exerting wide-ranging effects on belowground properties and processes. Given that the boreal forest occupies 11% of the Earth's terrestrial surface and stores more C than any other forest biome, our results suggest that this role of ants could potentially be of widespread significance for biogeochemical nutrient cycling, soil nutrient capital, and sequestration of belowground carbon.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?