Local-field confinement in three-pair arrays of metallic nanocylinders
Posted on 2017-04-28 - 14:20
Confinement of light in nano-scale region of three silver nanocylinder pairs is studied by finite-difference time-domain simulations. Light is confined in gaps between nanocylinders due to localized plasmon excitation and the strongest local-field enhancement exhibits in the gap of the second pair. The surface plasmon resonance has red-shift for nanocylinders of larger radius. The resonance wavelength and local-field enhancement are nearly proportional to the radius of nanocylinders in visible light region, i.e., the plasmon resonance of nanocylinder pairs is predictable and controllable. An open cavity model is proposed to understand the linear relation between the resonant wavelength and the radius of nanocylinders.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Ng, Ming-Yaw; Liu, Wei-Chih (2006). Local-field confinement in three-pair arrays of metallic nanocylinders. Optica Publishing Group. Collection. https://doi.org/10.6084/m9.figshare.c.3759899.v1