figshare
Browse

Light-needles in scattering media using self-reconstructing beams and the STED-principle

Posted on 2017-09-14 - 17:53
Stimulated emission depletion (STED) microscopy generates super-resolved images of single cells by point-wise depletion of fluorescence around a small focal volume. Scanned light sheet microscopy, on the other side, generates images line-wise by scanning a weakly focused laser beam through thousands of scattering cells. Here we address the question, whether fluorescence from an excitation beam can be depleted by a STED beam over tens of micrometers while propagating through scattering material. Therefore, we use two self-reconstructing Bessel beams in cw- mode with different angular momentum for fluorescence excitation and depletion along a distance of 110µm. We show that despite significant scattering at various arrangements of microspheres embedded in agarose gel and despite strong losses in spatial coherence, it is possible to generate a sufficiently good overlap of both beam intensities. Without affecting the self-healing capability of the illumination photons in the Bessel beam’s ring system, the emission of fluorescence photons thereof can be strongly suppressed. This results in a needle-like fluorescence distribution inside scattering media giving new perspectives into fundamental principles and applications in microscopy and metrology.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?