figshare
Browse

Ice Nucleation at the Water–Sapphire Interface: Transient Sum-Frequency Response without Evidence for Transient Ice Phase

Version 2 2018-11-08, 18:20
Version 1 2018-10-23, 19:18
Posted on 2018-11-08 - 18:20
Heterogeneous ice nucleation at the water–sapphire interface is studied using sum-frequency generation spectroscopy. We follow the response of the O–H stretch mode of interfacial water during ice nucleation as a function of time and temperature. The ice and liquid states each exhibit very distinct, largely temperature-independent responses. However, at the moment of freezing, a transient response with a significantly different intensity is observed, with a lifetime between several seconds and several minutes. The presence of this transient signal has previously been attributed to a transient phase of ice. Here, we demonstrate that the transient signal can be explained without invoking a transient ice phase, as the transient signal can simply be accounted for by a linear combination of time-dependent liquid and ice responses.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?