Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress
Posted on 2016-08-20 - 05:00
Abstract Background Exposure of the budding Saccharomyces cerevisiae to an alkaline environment produces a robust transcriptional response involving hundreds of genes. Part of this response is triggered by an almost immediate burst of calcium that activates the Ser/Thr protein phosphatase calcineurin. Activated calcineurin dephosphorylates the transcription factor (TF) Crz1, which moves to the nucleus and binds to calcineurin/Crz1 responsive gene promoters. In this work we present a genome-wide study of the binding of Crz1 to gene promoters in response to high pH stress. Results Environmental alkalinization promoted a time-dependent recruitment of Crz1 to 152 intergenic regions, the vast majority between 1 and 5 min upon stress onset. Positional evaluation of the genomic coordinates combined with existing transcriptional studies allowed identifying 140 genes likely responsive to Crz1 regulation. Gene Ontology analysis confirmed the relevant impact of calcineurin/Crz1 on a set of genes involved in glucose utilization, and uncovered novel targets, such as genes responsible for trehalose metabolism. We also identified over a dozen of genes encoding TFs that are likely under the control of Crz1, suggesting a possible mechanism for amplification of the signal at the transcription level. Further analysis of the binding sites allowed refining the consensus sequence for Crz1 binding to gene promoters and the effect of chromatin accessibility in the timing of Crz1 recruitment to promoters. Conclusions The present work defines at the genomic-wide level the kinetics of binding of Crz1 to gene promoters in response to alkaline stress, confirms diverse previously known Crz1 targets and identifies many putative novel ones. Because of the relevance of calcineurin/Crz1 in signaling diverse stress conditions, our data will contribute to understand the transcriptional response in other circumstances that also involve calcium signaling, such as exposition to sexual pheromones or saline stress.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Roque, Alicia; Petrezsélyová, Silvia; Serra-Cardona, Albert; Ariño, Joaquín (2016). Genome-wide recruitment profiling of transcription factor Crz1 in response to high pH stress. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.3622088.v1