figshare
Browse

First-in-human phase 1 study of IT1208, a defucosylated humanized anti-CD4 depleting antibody, in patients with advanced solid tumors

Posted on 2019-07-25 - 06:27
Abstract Background Transient CD4+ T cell depletion led to the proliferation of tumor-specific CD8+ T cells in the draining lymph node and increased infiltration of PD-1+CD8+ T cells into the tumor, which resulted in strong anti-tumor effects in tumor-bearing mice. This is a first-in-human study of IT1208, a defucosylated humanized anti-CD4 monoclonal antibody, engineered to exert potent antibody-dependent cellular cytotoxicity. Methods Patients with advanced solid tumors were treated with intravenous IT1208 at doses of 0.1 or 1.0 mg/kg. The first patient in each cohort received a single administration, and the other patients received two administrations of IT1208 on days 1 and 8. Results Eleven patients were enrolled in the 0.1 mg/kg (n = 4) and 1.0 mg/kg cohorts (n = 7). Grade 1 or 2 infusion-related reactions was observed in all patients. Decreased CD4+ T cells in peripheral blood due to IT1208 were observed in all patients and especially in those receiving two administrations of 1.0 mg/kg. CD8+ T cells increased on day 29 compared with baseline in most patients, resulting in remarkably decreased CD4/8 ratios. One microsatellite-stable colon cancer patient achieved durable partial response showing increased infiltration of both CD4+ and CD8+ T cells into tumors after IT1208 administration. Moreover, transcriptomic profiling of the liver metastasis of the patient revealed upregulation of the expression of interferon-stimulated genes, T cell activation-related genes, and antigen presentation-related genes after IT1208 administration. Two additional patients with gastric or esophageal cancer achieved stable disease lasting at least 3 months. Conclusions IT1208 monotherapy successfully depleted CD4+ T cells with a manageable safety profile and encouraging preliminary efficacy signals, which warrants further investigations, especially in combination with immune checkpoint inhibitors.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Springer Nature

AUTHORS (21)

Kohei Shitara
Satoshi Ueha
Shigeyuki Shichino
Hiroyasu Aoki
Haru Ogiwara
Tetsuya Nakatsura
Toshihiro Suzuki
Manami Shimomura
Toshiaki Yoshikawa
Kayoko Shoda
Shigehisa Kitano
Makiko Yamashita
Takayuki Nakayama
Akihiro Sato
Sakiko Kuroda
Masashi Wakabayashi
Shogo Nomura
Shoji Yokochi
Satoru Ito
Kouji Matsushima
need help?