figshare
Browse

Facile Ruthenium(II)-Catalyzed α‑Alkylation of Arylmethyl Nitriles Using Alcohols Enabled by Metal–Ligand Cooperation

Posted on 2017-07-21 - 18:21
A facile ruthenium­(II)-catalyzed α-alkylation of arylmethyl nitriles using alcohols is reported. The ruthenium pincer catalyst serves as an efficient catalyst for this atom-economical transformation that undergoes alkylation via borrowing hydrogen pathways, producing water as the only byproduct. Arylmethyl nitriles containing different substituents can be effectively alkylated using diverse primary alcohols. Notably, using ethanol and methanol as alkylating reagents, challenging ethylation and methylation of arylmethyl nitriles were performed. Secondary alcohols do not undergo alkylation reactions. Thus, phenylacetonitrile was chemoselectively alkylated using primary alcohols in the presence of secondary alcohols. Diols provided a mixture of products. When deuterium-labeled alcohol was used, the expected deuterium transposition occurred, providing both α-alkylation and α-deuteration of arylmethyl nitriles. Consumption of nitrile was monitored by GC, which indicated the involvement of first-order kinetics. Plausible mechanistic pathways are suggested on the basis of experimental evidence. The ruthenium catalyst reacts with base and generates an unsaturated intermediate, which further reacts with both nitriles and alcohols. While nitrile is transformed to enamine via [2 + 2] cycloaddition, alcohol is oxidized to aldehyde. The metal bound enamine adduct reacts with aldehyde via Michael addition, resulting in an ene-imine adduct, which perhaps undergoes direct hydrogenation by a Ru dihydride intermediate, produced from alcohol oxidation. However, in situ monitoring of the reaction mixture confirmed the presence of unsaturated vinyl nitrile in the reaction mixture in minor amounts (10%), indicating the possible dissociation of ene-imine adduct during the catalysis, which may further be hydrogenated to provide the α-alkylated nitriles. Overall, the efficient α-alkylation of nitriles using alcohols can be attributed to the amine-amide metal–ligand cooperation that is operative in the ruthenium pincer catalyst, which enables all of the catalytic intermediates to remain in the +2 oxidation state throughout the catalytic cycle.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?