figshare
Browse

Evolution of structural neuroimaging biomarkers in a series of adult patients with Niemann-Pick type C under treatment

Posted on 2017-02-02 - 05:00
Abstract Background Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by a wide clinical spectrum and non-specific conventional magnetic resonance imaging (MRI) signs. As substrate reduction therapy with miglustat is now used in almost all patients, its efficacy and the course of the disease are sometimes difficult to evaluate. Neuroimaging biomarkers could prove useful in this matter. We first performed a retrospective analysis of volumetric and diffusion tensor imaging (DTI) data on 13 adult NPC patients compared to 13 controls of similar age and sex. Eleven NPC patients were then studied using the same neuroimaging modalities over a mean of 5 years. The NPC composite score was used to evaluate disease severity. Results NPC patients showed atrophy in basal ganglia – pallidum (p = 0.029), caudate nucleus (p = 0.022), putamen (p = 0.002) and thalamus (p < 0.001) – cerebral peduncles (p = 0.003) and corpus callosum (p = 0.006), compared to controls. NPC patients also displayed decreased fractional anisotropy (FA) in several regions of interest – corona radiata (p = 0.015), internal capsule (p = 0.007), corpus callosum (p = 0.032) and cingulate gyrus (p = 0.002) – as well as a broad increase in radial diffusivity (p < 0.001), compared to controls. Over time, 3 patients worsened clinically, including 2 patients who interrupted treatment, while 8 patients remained stable. With miglustat, no significant volumetric change was observed but FA improved after 2 years in the corpus callosum and the corona radiata of NPC patients (n = 4; p = 0.029) – although that was no longer observed at further time points. Conclusion This is the first study conducted on a series of adult NPC patients using two neuroimaging modalities and followed under treatment. It confirmed that NPC patients displayed cerebral atrophy in several regions of interest compared to controls. Furthermore, miglustat showed an early effect on diffusion metrics in treated patients. DTI can detect brain microstructure alterations caused by neurometabolic dysfunction. Its potential as a biomarker in NPC shall be further evaluated in upcoming therapeutic trials.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?