figshare
Browse

Enabling low cost biopharmaceuticals: high level interferon alpha-2b production in Trichoderma reesei

Posted on 2016-06-10 - 05:00
Abstract Background The filamentous fungus Trichoderma reesei has tremendous capability to secrete over 100 g/L of proteins and therefore it would make an excellent host system for production of high levels of therapeutic proteins at low cost. We have developed T. reesei strains suitable for production of therapeutic proteins by reducing the secreted protease activity. Protease activity has been the major hindrance to achieving high production levels. We have constructed a series of interferon alpha-2b (IFNα-2b) production strains with 9 protease deletions to gain knowledge for further strain development. Results We have identified two protease deletions that dramatically improved the production levels. Deletion of the subtilisin protease slp7 and the metalloprotease amp2 has enabled production levels of IFNα-2b up to 2.1 and 2.4 g/L, respectively. With addition of soybean trypsin protease inhibitor the level of production improved to 4.5 g/L, with an additional 1.8 g/L still bound to the secretion carrier protein. Conclusions High levels of IFNα-2b were produced using T. reesei strains with reduced protease secretion. Further strain development can be done to improve the production system by reducing protease activity and improving carrier protein cleavage.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Microbial Cell Factories

AUTHORS (11)

Christopher Landowski
Eero Mustalahti
Ramon Wahl
Laurence Croute
Dhinakaran Sivasiddarthan
Ann Westerholm-Parvinen
Benjamin Sommer
Christian Ostermeier
Bernhard Helk
Juhani Saarinen
Markku Saloheimo
need help?