figshare
Browse

Design, Synthesis, and Bioactivation of O‑Glycosylated Prodrugs of the Natural Nitric Oxide Precursor Nω‑Hydroxy‑l‑arginine

Version 2 2016-09-01, 13:58
Version 1 2016-08-26, 21:14
Posted on 2016-08-22 - 00:00
Naturally occurring Nω-hydroxy-l-arginine (NOHA, 1) is the best substrate of NO synthases (NOS). The development of stable and bioavailable prodrugs would provide a pharmacologically valuable strategy for the treatment of cardiovascular diseases that are associated with endothelial dysfunction. To improve NOHAs druglike properties, we demonstrate that O-substitution by (glycosylic) acetal formation greatly increased the chemical stability of the hydroxyguanidine moiety and provided a nontoxic group that could be easily bioactivated by glycosidases. A straightforward synthetic concept was devised and afforded a series of diversely substituted prodrugs by O-conjugation of the hydroxyguanidine moiety with different monosaccharides. Systematic exploration of their bioactivation profile revealed that glucose-based prodrugs were more efficiently bioactivated than their galactose counterparts. NOS-dependent cytosolic NO release was quantified by automated fluorescence microscopy in a cell-based assay with murine macrophages. Glucose-based prodrugs performed particularly well and delivered cellular NO levels comparable to 1, demonstrating proof-of-concept.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?