figshare
Browse

Colloidal Superstructures with Triangular Cores: Size Effects on SERS Efficiency

Posted on 2020-06-16 - 19:05
The design of colloidal nanostructures as surface-enhanced Raman scattering (SERS) substrates requires control over both structural and optical characteristics. A widespread expectation is that the SERS efficiency depends crucially on whether the plasmonic excitation matches the exciting laser wavelength. However, also the balance between radiative (scattering) and nonradiative (absorbing) properties plays a major role, regarding both the efficiency of near-field enhancement and the experimentally observed signal intensity. We present a study of the influence of mode-excitation matching and extinction characteristics for core/satellite superstructures, comprising gold nanotriangles decorated with small gold nanospheres. The variation of the core size and aspect ratio allowed tuning the main coupled mode between 700 and 800 nm, from off-resonant through resonant at 785 nm, as well as tuning extinction contributions, from dominantly absorbing to dominantly scattering. We observed additional gains of 1–2 orders of magnitude in signal enhancement, which were correlated to core size and diffuse optical properties. Our findings indicate a competition between SERS enhancement and increased scattering losses in larger assemblies. Thus, a balance of optical parameters is required for efficient SERS and the development of assemblies as advanced sensing devices.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

ACS Photonics

AUTHORS (8)

Roland P. M. Höller
Christian Kuttner
Martin Mayer
Ruosong Wang
Martin Dulle
Rafael Contreras-Cáceres
Andreas Fery
Luis M. Liz-Marzán
need help?