figshare
Browse

Cognitive and emotional alterations in App knock-in mouse models of Aβ amyloidosis

Posted on 2018-07-28 - 05:00
Abstract Background Alzheimer’s disease (AD), the most common cause of dementia, is characterized by the progressive deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Mouse models of Aβ amyloidosis generated by knock-in (KI) of a humanized Aβ sequence provide distinct advantages over traditional transgenic models that rely on overexpression of amyloid precursor protein (APP). In App-KI mice, three familial AD-associated mutations were introduced into the endogenous mouse App locus to recapitulate Aβ pathology observed in AD: the Swedish (NL) mutation, which elevates total Aβ production; the Beyreuther/Iberian (F) mutation, which increases the Aβ42/Aβ40 ratio; and the Arctic (G) mutation, which promotes Aβ aggregation. AppNL-G-F mice harbor all three mutations and develop progressive Aβ amyloidosis and neuroinflammatory response in broader brain areas, whereas AppNL mice carrying only the Swedish mutation exhibit no overt AD-related pathological changes. To identify behavioral alterations associated with Aβ pathology, we assessed emotional and cognitive domains of AppNL-G-F and AppNL mice at different time points, using the elevated plus maze, contextual fear conditioning, and Barnes maze tasks. Results Assessments of emotional domains revealed that, in comparison with wild-type (WT) C57BL/6J mice, AppNL-G-F/NL-G-F mice exhibited anxiolytic-like behavior that was detectable from 6 months of age. By contrast, AppNL/NL mice exhibited anxiogenic-like behavior from 15 months of age. In the contextual fear conditioning task, both AppNL/NL and AppNL-G-F/NL-G-F mice exhibited intact learning and memory up to 15–18 months of age, whereas AppNL-G-F/NL-G-F mice exhibited hyper-reactivity to painful stimuli. In the Barnes maze task, AppNL-G-F/NL-G-F mice exhibited a subtle decline in spatial learning ability at 8 months of age, but retained normal memory functions. Conclusion AppNL/NL and AppNL-G-F/NL-G-F mice exhibit behavioral changes associated with non-cognitive, emotional domains before the onset of definitive cognitive deficits. Our observations consistently indicate that AppNL-G-F/NL-G-F mice represent a model for preclinical AD. These mice are useful for the study of AD prevention rather than treatment after neurodegeneration.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?