Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels
Posted on 2017-04-26 - 17:38
Optical microangiography (OMAG) is a powerful optical angio-graphic tool to visualize micro-vascular flow in vivo. Despite numerous demonstrations for the past several years of the qualitative relationship between OMAG and flow, no convincing quantitative relationship has been proven. In this paper, we attempt to quantitatively correlate the OMAG signal with flow. Specifically, we develop a simplified analytical model of the complex OMAG, suggesting that the OMAG signal is a product of the number of particles in an imaging voxel and the decorrelation of OCT (optical coherence tomography) signal, determined by flow velocity, inter-frame time interval, and wavelength of the light source. Numerical simulation with the proposed model reveals that if the OCT amplitudes are correlated, the OMAG signal is related to a total number of particles across the imaging voxel cross-section per unit time (flux); otherwise it would be saturated but its strength is proportional to the number of particles in the imaging voxel (concentration). The relationship is validated using microfluidic flow phantoms with various preset flow metrics. This work suggests OMAG is a promising quantitative tool for the assessment of vascular flow.
CITE THIS COLLECTION
Choi, Woo June; Qin, Wan; Chen, Chieh-Li; Wang, Jingang; Zhang, Qinqin; Yang, Xiaoqi; et al. (2016). Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. Optica Publishing Group. Collection. https://doi.org/10.6084/m9.figshare.c.3753365.v1
or
Select your citation style and then place your mouse over the citation text to select it.
SHARE
Usage metrics
Read the peer-reviewed publication

AUTHORS (8)
WC
Woo June Choi
WQ
Wan Qin
CC
Chieh-Li Chen
JW
Jingang Wang
QZ
Qinqin Zhang
XY
Xiaoqi Yang
BZ
Bruce Z. Gao
RK
Ruikang K. Wang