figshare
Browse

Catalytic Cracking of Endothermic Fuels over Meso-HZSM-5/MCM-41 Coatings

Posted on 2019-12-02 - 23:13
Novel structured catalysts of meso-HZSM-5/MCM-41 composite coatings were synthesized via a two-step process: washcoating HZSM-5 powder on the internal surface of a stainless steel tube and subsequently converting SiO2 binder into MCM-41 by sequential desilication and recrystallization. Additional Fe and Al species were incorporated into the MCM-41 framework for increasing the active sites. It was found that the adherence strength of composite coating was remarkably improved, as a result of encapsulation of HZSM-5 crystals into the successive MCM-41 network. Catalytic cracking of supercritical n-dodecane (500 °C and 4 MPa) was employed to test the catalytic performance of the coatings. The ZC-Al/Fe coating with both Fe and Al species incorporated into the MCM-41 framework showed an excellent catalytic performance, with the initial conversion of n-dodecane enhancement by 50.6%, the deactivation rate reduction by 64.5%, and the heat sink improvement by 14.5%, compared to the parent HZSM-5 coating. The performance enhancement for ZC-Al/Fe coating may result from the sequential precracking–cracking–dehydrogenation reaction process catalyzed by acid sites in MCM-41, acid sites in meso-HZSM-5, and redox sites in MCM-41, respectively.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?