figshare
Browse

Catalyst Proximity-Induced Functionalization of h‑BN with Quat Derivatives

Posted on 2019-08-27 - 15:36
Inert single-layer boron nitride (h-BN) grown on a catalytic metal may be functionalized with quaternary ammonium compounds (quats) that are widely used as nonreactive electrolytes. We observe that the quat treatment, which facilitates the electrochemical transfer of two-dimensional materials, involves a decomposition of quat ions and leads to covalently bound quat derivatives on top of the 2D layer. Applying tetraoctylammonium and h-BN on rhodium, the reaction product is top-alkylized h-BN as identified with high-resolution X-ray photoelectron spectroscopy. The alkyl chains are homogeneously distributed across the surface, and the properties thereof are well-tunable by the choice of different quats. The functionalization further weakens the 2D material–substrate interaction and promotes easy transfer. Therefore, the functionalization scheme that is presented enables the design of 2D materials with tailored properties and with the freedom to position and orient them as required. The mechanism of this functionalization route is investigated with density functional theory calculations, and we identify the proximity of the catalytic metal substrate to alter the chemical reactivity of otherwise inert h-BN layers.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?